
h – Operations Research Introduction – h

Chapter h – Operations Research

1. Scope of the Chapter

This chapter contains functions to solve certain integer programming problems, and the
transportation problem. The functions provided in this chapter treat all matrices as dense. They
are therefore suitable for reasonable sized problems, but are less suited to large sparse problems
for which specialist software might be more appropriate. For large sparse LP or QP problems, use
nag opt sparse convex qp (e04nkc).

2. Background

General linear programming (LP) and quadratic programming (QP) problems (see Dantzig (1963))
are of the form:

minimize F (x), x ∈ Rn

where F (x) is of the form cT x (LP) or cT x+ 1
2xT Hx (QP) for some constant vector c ∈ Rn, matrix

H ∈ Rn×n, subject to linear constraints which may have the forms:

n∑

j=1

aijxj = bi i = 1, 2, . . . , m1 (equality)

n∑

j=1

aijxj ≤ bi i = m1 + 1, . . . , m2 (inequality)

n∑

j=1

aijxj ≥ bi i = m2 + 1, . . . , m (inequality)

xj ≥ lj j = 1, 2, . . . , n (simple bound)

xj ≤ uj j = 1, 2, . . . , n (simple bound)

This chapter deals with integer programming (IP) problems in which some or all the elements of the
solution vector x are further constrained to be integers. For general LP and QP problems where x
takes only real (i.e., non-integer) values, refer to Chapter e04.

IP problems may or may not have a solution, which may or may not be unique.

Consider for example the following problem:

minimize 3x1 + 2x2

subject to 4x1 + 2x2 ≥ 5
2x2 ≤ 5

x1 − x2 ≤ 2
and x1 ≥ 0, x2 ≥ 0.

The shaded region in Figure 1 is the feasible region, the region where all the constraints are satisfied,
and the points within it which have integer co-ordinates are circled. The lines of shading are in
fact contours of decreasing values of the objective function 3x1 +2x2, and it is clear from Figure 1
that the optimum IP solution is at the point (1,1). For this problem the solution is unique.

However, there are other possible situations:

(a) there may be more than one solution; e.g., if the objective function in the above problem were
changed to x1 + x2, both (1,1) and (2,0) would be IP solutions.

(b) the feasible region may contain no points with integer co-ordinates, e.g., if an additional
constraint

3x1 ≤ 2

were added to the above problem.

[NP3275/5/pdf] 3.intro-h.1

Introduction – h NAG C Library Manual

(c) there may be no feasible region, e.g., if an additional constraint

x1 + x2 ≤ 1

were added to the above problem.

(d) the objective function may have no finite minimum within the feasible region; this means that
the feasible region is unbounded in the direction of decreasing values of the objective function,
e.g., if the constraints

4x1 + 2x2 ≥ 5, x1 ≥ 0, x2 ≥ 0,

were deleted from the above problem.

1 2 3 4

1

2

3

4 x 1 + 2 x 2 = 5

2 x 2 = 5

x 1 - x 2 = 2

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗

x 1

x 2

d e c r e a s i n g v a l u e s o f 3 x 1
 + 2 x 2

Figure 1

Algorithms for IP problems are usually based on algorithms for general LP or QP problems, together
with some procedure for constructing additional constraints which exclude non-integer solutions (see
Beale (1977)). The basic principle is the same whether the objective is of the LP or QP form.

The Branch and Bound (BB) method is a well-known and widely used technique for solving IP
problems (see Beale (1977) or Mitra (1973)). It involves subdividing the optimum solution to the
original LP (or QP) problem into two mutually exclusive sub-problems by branching an integer
variable that currently has a fractional optimal value. Each sub-problem can now be solved as an
LP (or QP) problem, using the objective function of the original problem. The process of branching
continues until a solution for one of the sub-problems is feasible with respect to the integer problem.
In order to prove the optimality of this solution, the rest of the sub-problems in the BB tree must
also be solved. Naturally, if a better integer feasible solution is found for any sub-problem, it should
replace the one at hand.

A common method for specifying IP and LP/QP problems in general is the use of the MPSX file
format (see unattributed (1971)). A full description of this file format is provided in the routine
documents for nag ip mps read (h02buc) and nag opt sparse mps read (e04mzc).

The efficiency in computations is enhanced by discarding inferior sub-problems. These are problems
in the BB search tree whose LP (or QP) solutions are greater than (in the case of minimization)
the best integer solution at hand.

A special type of linear programming problem is the transportation problem in which there are p×q
variables ykl which represent quantities of goods to be transported from each of p sources to each
of q destinations.

3.intro-h.2 [NP3275/5/pdf]

h – Operations Research Introduction – h

The problem is to minimize

p∑

k=1

q∑

i=1

ckiyki

where ckl is the unit cost of transporting from source k to destination l. The constraints are:

q∑

i=1

yki = Ak (availabilities)

p∑

k=1

yki = Bi (requirements)

Note that the availabilities must equal the requirements:

p∑

k=1

Ak =
q∑

i=1

Bi =
p∑

k=1

q∑

i=1

yki.

and if all the Ak and Bl are integers, then so are the optimal ykl.

3. Recommendation on Choice of Function

This chapter contains functions to solve certain integer programming problems, and the
transportation problem. The functions provided in this chapter treat all matrices as dense. They
are therefore suitable for reasonable sized problems, but are less suited to large sparse problems for
which specialist software might be more appropriate. For large sparse general LP or QP problems,
use nag opt sparse convex qp (e04nkc).

4. Optional Facilities

The IP function in Chapter h provides a range of optional facilities: these offer the possibility of fine
control over many of the algorithmic parameters and the means of adjusting the level and nature
of the printed results. The MPSX reading function also offers some optional facilities.

Control of these optional facilities is exercised by a structure of type Nag H02 Opt, the members
of the structure being optional input or output parameters to the function. After declaring the
structure variable, which is named options in this manual, the user must initialise the structure by
passing its address in a call to the utility function nag ip init (h02xxc). Selected members of the
structure may then be set to the user’s required values and the address of the structure passed to
the NAG function. Any member which has not been set by the user will indicate to the function
that the default value should be used for this parameter. A more detailed description of this process
is given below in Section 4.4.

Examples of parameters which may be altered from their default value are options.feas tol and
options.int tol (these control the accuracy to which the constraints are satisfied in the BB sub-
problems and the accuracy of the final objective function value, respectively), and options.max iter
(which limits the number of iterations the algorithm will perform at each sub-problem). Certain
members of options supply further details concerning the final results, for example on exit from the
IP solver the member pointers options.state and options.lambda give the status of the constraints
and the final values of the Lagrange multipliers respectively. Another use of the options structure
is to allow additional information read in by the MPSX reader (such as the MPSX row and column
names) to be communicated to the IP solver for use in its printout.

4.1. Control of Printed Output

Results from the IP solution process are printed by default on the stdout (standard output)
stream. These include the results after each node of the BB search tree and the final results at
termination of the search process. The amount of detail printed out may be increased or decreased
by setting the optional parameter print level, i.e., the structure member options.print level. This
member is an enum type, Nag PrintType, and an example value is Nag Soln which when assigned to

[NP3275/5/pdf] 3.intro-h.3

Introduction – h NAG C Library Manual

options.print level will cause the IP function to print only the final result; all intermediate results
printout is suppressed.

If the results printout is not in the desired form then it may be switched off, by setting
options.print level = Nag NoPrint, or alternatively the user can supply his or her own function
to printout or make use of both the intermediate and final results. Such a function would be
assigned to the pointer to function member options.print fun; the user defined function would then
be called in preference to the NAG print function.

In addition to the results, the values of the parameters to the optimization function are printed out
when the function is entered; the Boolean member options.list may be set to FALSE if this listing
is not required.

Printing may be output to a named file rather than to stdout by providing the name of the file in
the options character array member outfile. Error messages will still appear on stderr, if fail.print
= TRUE or the fail parameter is not supplied (see the Introduction to the NAG C Library Manual
for details of error handling within the library).

The level of output provided by the MPSX reading function may also be controlled. In this case,
control is provided by the optional parameter output level.

4.2. Memory Management

The options structure contains a number of pointers for the input of data and the output of results.
The NAG functions will manage the allocation of memory to these pointers; when all calls to these
functions have been completed then a utility function nag ip free (h02xzc) can be called by the
user’s program to free the NAG allocated memory which is no longer required.

If the calling function is part of a larger program then this utility function allows the user to
conserve memory by freeing the NAG allocated memory before the options structure goes out of
scope. nag ip free (h02xzc) can free all NAG allocated memory in a single call, but it may also
be used selectively. In this case the memory assigned to certain pointers may be freed leaving the
remaining memory still available; pointers to this memory and the results it contains may then be
passed to other functions in the user’s program without passing the structure and all its associated
memory.

Although the NAG C Library functions will manage all memory allocation and deallocation, it may
occasionally be necessary for the user to allocate memory to the options structure from within the
calling program before entering the optimization function.

An example of this is where the user stores information in a file from an optimization run and at
a later date wishes to use that information to solve a similar optimization problem or the same
one under slightly changed conditions. The pointer options.state, for example, would need to be
allocated memory by the user before the status of the constraints could be assigned from the values
in the file.

If the user does assign memory to a pointer within the options structure then the deallocation of this
memory must also be performed by the user; the utility function nag ip free (h02xzc) will only free
memory allocated by NAG C Library optimization functions. When user allocated memory is freed
using the standard C library function free() then the pointer should be set to NULL immediately
afterwards; this will avoid possible confusion in the NAG memory management system if a NAG
function is subsequently entered.

4.3. Reading Optional Parameter Values From a File

Optional parameter values may be placed in a file by the user and the function nag ip read (h02xyc)
used to read the file and assign the values to the options structure. This utility function permits
optional parameter values to be supplied in any order and altered without recompilation of the
program. The values read are also checked before assignment to ensure they are in the correct
range for the specified option. Pointers within the options structure cannot be assigned to using
nag ip read (h02xyc).

3.intro-h.4 [NP3275/5/pdf]

h – Operations Research Introduction – h

4.4. Method of Setting Optional Parameters

The method of using and setting the optional parameters is:

1 Declare a structure of type Nag H02 Opt.

2 Initialise the structure using nag opt init (e04xxc).

3 Assign values to the structure.

4 Pass the address of the structure to the optimization function.

5 Call nag opt free (e04xzc) to free any memory allocated by the optimization function.

If after step 4, it is wished to re-enter the optimization function, then step 3 can be returned to
directly, i.e., step 5 need only be executed when all calls to the optimization function have been
made.

At step 3, values can be assigned directly and/or by means of the option file reading function
nag ip read (h02xyc). If values are only assigned from the options file then step 2 need not be
performed as nag ip read (h02xyc) will automatically call nag ip init (h02xxc) if the structure has
not been initialised.

5. References

Ahuja R K, Magnanti T L and Orlin J B (1993) Network Flows: Theory, Algorithms, and
Applications Prentice Hall.

Beale E M (1977) Integer Programming The State of the Art in Numerical Analysis (ed D A H
Jacobs) Academic Press.

Dantzig G B (1963) Linear Programming and Extensions Princeton University Press.
Mitra G (1973) Investigation of branch and bound strategies for the solution of mixed integer linear

programs Math. Programming 4 155–170.
Williams H P (1990) Model Building in Mathematical Programming (3rd Edition) Wiley.
unattributed (1971) Program Number 5734 XM4 MPSX - Mathematical programming system IBM

Trade Corporation, New York.

6. Available Functions

Solution of IP problems (linear or quadratic objective function) h02bbc
IP utility functions

read MPSX data for IP, LP or QP problem from a file h02buc
free memory allocated by nag ip mps read (h02buc) h02bvc
initialize option structure to null values h02xxc
read optional parameter values from a file h02xyc
free NAG allocated memory from option structures h02xzc

Transportation problem h03abc

[NP3275/5/pdf] 3.intro-h.5

